

Karolinska Institutet

Challenges in AMR *K. pneumoniae* infections and treatment,

Christian G. Giske, MD/PhD Chief Consultant Physician/Assoc. Professor Dep. Head of Clinical microbiology Department of Laboratory Medicine Utstein Kloster, 3 May 2018

Research group

Department of Laboratory Medicine

Karolinska University Hospital

http://ki.se/en/labmed/christian-giske-group

Vetenskapsrådet

JOINT PROGRAMMING INITIATIVE ON ANTIMICROBIAL RESISTANCE

When does antimicrobial resistance really matter?

- In severe disease: as a cause of mortality
 - \rightarrow Frequently difficult to ascertain contribution to death
 - \rightarrow Patient comorbidities can be a significant bias
 - \rightarrow Some types of resistance come with greatly reduced fitness
 - \rightarrow The role of strain factors usually insufficiently studied
- In other diseases: only when using "soft parameters"
 - \rightarrow Length of stay/increased costs
 - \rightarrow Impact on strain transmission
 - \rightarrow Long-term consequences
- Bloodstream infections: undisputable relevance, frequently access to strains, easier to compare between countries

In vitro resistance vs clinical response

- Rex and Pfaller 2002 (antifungal AST)
 - \rightarrow Susceptible=responds in 90% of the cases
 - \rightarrow Resistant=still responds in around 60% of the cases
 - → Pertains to immunocompetent individuals with monomicrobial infections with predictable penetration of the drug to the infection site
 - \rightarrow Polymicrobial infections with unpredictable penetration: even lower
- Strain variations
 - \rightarrow Are usually major in preclinical PK-PD data
 - \rightarrow Strain virulence is not taken into account in AST
 - → We also do not take into account individual variation in the immune system

Doern GV and Brecher SM. JCM 2012

Bloodstream infections:

Klebsiella pneumoniae – invasive infections

K. pneumoniae (sensu latu), invasive infections Stockholm

Maatallah M et al. PloS One 2014. ST380, K2, *rmpA* was encountered, but was not associated with a fatal outcome

K. pneumoniae (sensu latu), invasive infections Stockholm

Parameter	Dead within 30 d	Survivors	P-value
Charlson (median)	5	2	0.0003
Metastatic cancer	43.5%	11.2%	0.001
KpIII (<i>variicola</i>)	43.5%	22.4%	

Invasive infection of *K. pneumoniae* vs *E. coli*

	K. pneumoniae	E. coli	Adjusted odds		
	n = 599	n = 599	ratio		
Patients factors	No (%)	No (%)	(95% CI)		
			K. pneumoniae vs		
			E. coli		
Peripheral vascular disease	30 (5)	14 (2)	3.74 (1.65-8.48)		
COPD	58 (10)	37 (6)	1.96 (1.14-3.36)		
ney disease 105 (18)		69 (12)	1.90 (1.28-2.82)		
Bile disease	36 (6)	15 (3)	3.10 (1.44-6.66)		
Hematological malignancy	112 (19)	76 (13)	1.70 (1.07-2.70)		
Bile/liver/pancreas malignancy	51 (9)	22 (4)	3.45 (1.77-6.75)		
Colorectal malignancy	42 (7)	24 (4)	2.56 (1.34-4.89)		
Urinary catheter	191 (32)	111 (19)	2.36 (1.64-3.40)		
Central catheter	190 (32)	96 (16)	2.32 (1.53-3.54)		
Hospital-acquired ^{a)}	178 (30)	197 (33)	0.53 (0.37-0.77)		
Healthcare- associated community-onset ^{a)}	163 (27)	55 (9)	3.06 (2.03-4.62)		

Table 1. Clinical characteristics of patients with invasive infection caused by K. pneumoniae versus E. coli, multivariable analysis.

Vading M et al. PloS One 2018

Higher 30-d mortality in K. pneumoniae

Factors associated with mortality

Table 2. Associated factors for mortality in the extended K. pneumoniae cohort, factors significant in multivariable analysis.

	Mortality within	Mortality within	Mortality within	
	7d	30 d	90 d	
Associated factors*	(n = 43)	(n = 101)	(n = 176)	
	Adjusted OR	Adjusted OR	Adjusted OR	
Age	1.03 (1.00-1.05)	1.02 (1.00-1.04)	1.03 (1.01-1.04)	
Polymicrobial infection	3.07 (1.51-6.27)	2.20 (1.32-3.68)		
Kidney disease			2.33 (1.41-3.84)	
CNS disease		3.12 (1.73-5.62)	2.09 (1.26-3.45)	
Lung malignancy	13.45 (3.94-45.90)	13.20 (4.11-42.38)	20.77 (6.01-71.73)	
Urogenital, GI, bile/liver/pancreas malignancy		2.07 (1.10-3.91)	3.07 (1.87-5.05)	
Hematological malignancy		3.13 (1.47-6.63)	2.50 (1.33-4.72)	
Other malignancy**	6.18 (1.87-20.41)	6.34 (2.54-15.85)	3.77 (1.63-8.74)	
Hospital-acquired			1.99 (1.21-3.28)	
Healthcare-associated community-onset			1.69 (1.02-2.79)	
Source of infection				
Respiratory tract	3.62 (1.01–13.04)	3.79 (1.32-10.87)	3.74 (1.44-9.68)	
Bile/liver, GI		1.92 (1.00-4.16)	1.91 (1.15-3.15)	
Unknown		2.09 (1.05-4.16)		

K. pneumoniae: expanding pathogen in Europe, not in Sweden

ESBL-producing *K. pneumoniae*

Carbapenem resistant K. pneumoniae

Carbapenem-R K. pneumoniae, 2016

CPE genotypes – situation in Europe

Grundmann H, et al. Lancet Infect Dis. 2017;17:153–163.

The process from colonization to infection

Hypothesis under investigation in recently funded multicentre study (Joint Programming Initiative AMR, JPIAMR)

Colonization to infection – a hypothesis

- Process likely influenced by antimicrobial consumption
- We have the tools to stratify in high-risk and low-risk carriage
- Therapeutic interventions: directed towards high-risk carriage
- Effects could be monitored by continuous surveillance of clones occurring in bloodstream infection

Klebsiella pneumoniae – novel treatment

Activity of new drugs

Antimicrobial	EBA ESBL	EBA AmpC	KPC KP	EBA MBL	PA MDR	AB MDR	SM
Ceftolozane-tazobactam	+	-	-	-	+	-	
Ceftazidime-avibactam	+	+	+	-	+/-	-	
Meropenem-vaborbactam	+	+	+	-	+/-		
Imipenem-relebactam	+	+	+	-	+/-		
Cefiderocol	+	+	+	+	+	+	+
Plazomicin	+	+	+	+/-	+	+	
Eravacycline	+(?)	+(?)	+(?)	+(?)	-	?	?
Colistin	+	+	+	+	+	+	+

Adapted from Falagas ME et al. Expert Review of Anti-infect. Ther. 2016; 8:747-763

Emerging resistance to new agents...

- K. pneumoniae ST258, bloodstream infection – isolates on day 1 (MIC 4 mg/L) and 2 (MIC 32 mg/L) (meropenem therapy)
- PacBio sequencing of both strains
- OmpK35 and K36 mutations
- Increase expression of KPC-3 (multiple copies of Tn4401 transposon containing KPC-3)

Resistance to Ceftazidime-Avibactam in *Klebsiella pneumoniae* Due to Porin Mutations and the Increased Expression of KPC-3

Romney M. Humphries, [©] Peera Hemarajata Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, California, USA

KEYWORDS ceftazidime-avibactam, KPC, OmpK35, OmpK36, resistance

AAC 2017; 61: e00537-17.

Mobile colistin resistance not the most common, but gets most attention...

MCR-type	Country	Species	Source
mcr-1	China	E. coli	Animal
mcr-1.2	Italy K. pneumoniae		Human
mcr-1.3	China	Salmonella	Animal
mcr-2	Belgium	E. coli	Animal
mcr-3	China	E. coli	Animal
mcr-4	Italy	Salmonella	Animal
mcr-5	Germany	Salmonella	Animal

Liu et al. Lancet ID 2016; Xavier et al. Euro Surveill 2016; Di Pilato et al. AAC 2016; Yin et al. mBio 2017; Carattoli et al. Euro Surveill 2017; Borowiak et al. JAC 2017; Lu et al. AAC 2017

Fitness cost of carrying mcr-1

- In vitro competition assay (vs *E. coli* JW1)
- *K. pneumoniae* parental strain defined as selection coefficient zero
- Nang SC et al. JAC 2018

mcr-1 confers a selective advantage only Karolinska under selective pressure with polymyxins

- Could indicate that e.g. carriage of *mcr-1* could have a low impact in individuals that are not exposed to polymyxins
- Consistent with the emergence of *mcr* in regions where polymyxin consumption is high

Colistin heteroresistance matters in the murine peritonitis model

Hollow fiber: polymyxin B+fosfomycin prevents regrowth

Pan-resistant K. pneumoniae

Class and antimicrobial(s)	MIC(s) (µg/ml)	Interpretation	Associated resistance gene(s)	
Aminoglycoside				
Amikacin	>64	R	aacA4, rmtC	
Gentamicin	>16	R	aacA4, rmtC	
Tobramycin	>16	R	aacA4, rmtC	
Beta-lactam				
Ampicillin	>32	R	bla _{CTX-M-15} , bla _{SHV-28} , bla _{CMY-6} , bla _{NDM-1}	de Man T IR et al
Aztreonam	>64	R	bla _{CTX-M-15} , bla _{CMY-6}	
Cefazolin	>8	R	bla _{CTX-M-15} , bla _{SHV-28} , bla _{CMY-6} , bla _{NDM-1}	
Cefepime	>32	R	bla _{CTX-M-15} , bla _{NDM-1}	mBio 2018: 9:
Cefotaxime	>64	R	bla _{CTX-M-15} , bla _{CMY-6} , bla _{NDM-1}	
Cefotaxime-clavulanic acid	>32/4	ND	bla _{CMY-6} , bla _{NDM-1}	00110 10
Cefoxitin	>16	R	bla _{CMY-6} , bla _{NDM-1}	600440-10.
Ceftazidime	>128	R	bla _{CTX-M-15} , bla _{CMY-6} , bla _{NDM-1}	
Ceftazidime-avibactam ^b	>16/4	R	bla _{NDM-1}	
Ceftazidime-clavulanic acid	>64/4	ND	bla _{CMY-6} , bla _{NDM-1}	
Ceftriaxone	>32	R	bla _{CTX-M-15} , bla _{CMY-6} , bla _{NDM-1}	
Doripenem	>8	R	bla _{NDM-1}	
Ertapenem	>8	R	bla _{NDM-1}	
Imipenem	32	R	bla _{NDM-1}	
Meropenem	>8	R	bla _{NDM-1}	
Piperacillin-tazobactam	>128/4	R	bla _{NDM-1}	
Chloramphenicol				
Chloramphenicol	>16	R	Truncated ramR	
Fluoroquinolone				
Ciprofloxacin	>8	R	oqxA, oqxB, gyrA and parC mutations, trun	icated ramR
Levofloxacin	>8	R	oqxA, oqxB, gyrA and parC mutations, trun	acated ramR
Fosfomycin				
Fosfomycin	32 ^c , 16 ^d	ND	fosA	
Polymyxin				
Colistin	>8	NWT	Disrupted mgrB	
Polymyxin-B	>8	NWT	Disrupted mgrB	
Sulfonamide				
Trimethoprim-sulfamethoxazole	8/152	R	sul1	
Tetracycline				
Tetracycline	>32	R	tet(A), truncated ramR	
Tigecycline ⁶	4	1	Truncated ramR	
Macrolide				
Not included in AST panel	Na	Na	mph(A)	

Persister cells are commonly formed with

- Persister cells could play a role in the frequent development of resistance
- Li Y et al. J Medical Microbiol. 2018; 67: 273-281

Persister cells in stationary phase can survive in 100-fold MIC concentrations

Karolinska

- Number of hours from subcultivation
- Statistically significant when comparing late exponential phase and stationary phase (could be of importance in subacute infections/colonization

Bacterial clones

What is a clone?

History of phylogenetic typing

- Multilocus enzyme electrophoresis (MLEE)
 - → Identifies variants of the gene products of 10–20 housekeeping genes (genes encoding basic metabolic functions)
 - → Electrophoresis of cell extracts on starch gels, followed by detection using specific enzyme stains
 - \rightarrow Problem: interlaboratory variation
- 1998 introduction of multilocus sequence typing (MLST)
 - \rightarrow Increased resolution, few loci needed
 - \rightarrow Exportable data and international databases
 - \rightarrow *N. meningitidis* and *S. pneumoniae* both available in 1998
- Difficult to visualize population structures with trees as the number of sequences increase

Spratt BG. JAC 2012

Clonal expansion – MLST definition (strict)

Isolate	Gene A	Gene B	Gene C	Gene D	Gene E	Gene F	Gene G
1	1	1	1	1	1	1	1
2	1	1	1	1	1	1	2
3	1	1	1	1	1	2	1
4	1	1	1	1	2	2	2

High-Risk Clones (HiRC)

- Associated with resistance of great clinical importance AND
- High ability to spread in health-care institutions
 OR
- High ability to confer invasive disease
 OR
- High ability to colonize individuals for long time periods
- Perhaps a better term: epidemic clone

Some early work on epidemic clones

Establishing Clonal Relationships between VIM-1-Like Metallo-β-Lactamase-Producing *Pseudomonas aeruginosa* Strains from Four European Countries by Multilocus Sequence Typing[⊽]

Christian G. Giske,¹^{†*} Balázs Libisch,²^{†*} Céline Colinon,³[‡] Effie Scoulica,⁴ Laura Pagani,⁵ Miklós Füzi,² Göran Kronvall,¹ and Gian Maria Rossolini³

Early work in KPC-producing *K. pneumoniae*

Molecular Epidemiology of KPC-Producing *Klebsiella pneumoniae* Isolates in the United States: Clonal Expansion of Multilocus Sequence Type 258[∀] AAC 2009; 8: 3365

Brandon Kitchel,^{1*} J. Kamile Rasheed,¹ Jean B. Patel,¹ Arjun Srinivasan,¹ Shiri Navon-Venezia,² Yehuda Carmeli,² Alma Brolund,³ and Christian G. Giske³

Population structures

Clonal, no recombination

Recombination within main branches

Panmictic/epidemic

Smith JM. PNAS 1993

Poplation snapshot *K. pneumoniae*

K. pneumoniae ST258

- Clone associated with the spread of the carbapenemase KPC
- Initially described in USA, then in most countries where KPC has been detected
- Responsible for 70% of the cases of KPC in the US and most cases in Israel
- Also capable of causing invasive disease

Kitchel et al. AAC 2009

Sequence types in NDM-produces

Sequence type in VIM-producers

Hasan et al. CMI 2013

Correlation cgMLST and MLST

Epidemic clones of *K. pneumoniae*

Overview of strain collection

Searching for differences between epidemic and non-epidemic clones in the genome

Feature	Difference epidemic vs non-epidemic
Virulence genes	Few virulence genes in both groups
Prophages	No quantitative difference between groups
CRISPR-Cas	Higher occurrence in epidemic (p<0.01)

Örmälä-Odegrip A et al. Manuscript

CRISPR-Cas: the bacterial immune system

Anti-CRISPR: phages and mobile elements evade CRISPR-Cas immunity

Pawluk A. Nat Rev Micro 2017

Growth rate (Bioscreen)

Growth rate, bioscreen

GLM (ANOVA) F =8.406 df= 1 Sig.= 0.05 level

Student T-test Sig.= 0.005 level Non-epidemic isolates grow faster

Growth rate per CC

GLM (ANOVA) F =4.326 df= 4 Sig.= 0.003 Post Hoc * CC258 < CC147, Singleton CC147 > CC258, CC17 Singleton > CC258, CC17

* The mean difference is significant at 0.05 level

Virulence (Galleria mellonella)

Galleria mellonella

Survival epidemic vs non-epidemic

Virulence: epidemic>non-epidemic

GLM (Epi vs Non-epi) df = 1F= 9.099 Sign.= 0.003

Epidemic

Poct Hoc: multiple comparison

Tukey: Epidemic > Non-epidemic (at sig 0.05) *LSD*: Epidemic > Non-epidemic (at sig 0.02)

Mean difference is significant

Virulence vs clonal complex

Liquid competitions (MACS)

Competition experiments: magneticactivated cell sorting (MACS)

Positive slope \rightarrow (+) S-value: Strain 1 wins over Strain 2

Negative slope \rightarrow (-) S-value: Strain 1 looses against Strain 2

Preliminary assessment: non-epidemic strains seem to win over epidemic strains in majority of cases

Novel treatment concepts

Novel treatment concepts

Conclusions

- In some regions *K. pneumoniae* infections are observed in multimorbid individuals
- Successful (or epidemic) clones are responsible for a major share of dissemination of antimicrobial resistance
- Noteworthy among resistance mechanisms are particularly the carbapenemases
- Heteroresistance may be important in resistance to several drug classes – possible to suppress with combination therapy?
- Molecular typing tools have helped us define important clones
- The factors determining why some clones are epidemic are still largely unknown – detecting them only a first step
- Novel treatment concepts: phages and antibodies